
The Masked Bouncy Particle Sampler: A Parallel, Chromatic,

Piecewise-Deterministic Markov Chain Monte Carlo Method

James Thornton1, George Deligiannidis1, and Arnaud Doucet1

1Department of Statistics, University of Oxford

April 9, 2021

Abstract

Piecewise deterministic Markov Processes (PDMP) provide the foundation for a promising
class of non-reversible, continuous-time Markov Chain Monte Carlo (MCMC) procedures and
have been shown experimentally to enjoy attractive scaling properties in high-dimensional set-
tings. This work introduces the Masked Bouncy Particle Sampler (BPS), a flexible MCMC
procedure within the PDMP framework that exploits model structure and modern parallel
computing resources using chromatic spatial partitioning ideas from the discrete-time MCMC
literature. We extend the basic procedure by introducing a dynamic factorization scheme of
the target distribution to reduce boundary effects commonly associated to fixed partitioning.
We establish the validity of the proposed methods theoretically and provide experimental evi-
dence that the Masked Bouncy Particle Sampler delivers significant efficiency gains over other
state-of-the-art sampling schemes for certain high-dimensional sparse models.

1 Introduction

MCMC procedures are a well understood and widely applied class of algorithms to perform statistical
inference for complex models [Robert and Casella, 2013]. Modern, state-of-the-art statistical and
machine learning models are often high-dimensional and leverage large data-sets; most MCMC
algorithms however scale poorly in such settings due to being inherently difficult to parallelize, or
reliant on accept/reject steps. Such rejection procedures typically require access to all available
data in the accept/reject step or prove inefficient in high-dimensional settings due to the difficulty
of finding an appropriate proposal distribution.

It has been shown that existing Piecewise deterministic MCMC (PD-MCMC) procedures such as
Local BPS [Peters and de With, 2012, Bouchard-Côté et al., 2018, Zhao and Bouchard-Côté, 2019],
Zig-Zag [Bierkens et al., 2019], Stochastic BPS [Pakman et al., 2017] and Coordinate Sampler [Wu
and Robert, 2020] are rejection-free and benefit from forms of sub-sampling. In addition, as with
Hamiltonian Monte Carlo (HMC) [Duane et al., 1987, Neal, 2011] and Langevin Monte Carlo,

1

one may use gradient information in the deterministic state propagation of a PDMP procedure.
Gradients are often cheap to compute using recent automatic differentiation libraries and have been
shown to improve mixing dynamics in high-dimension. Despite these scalable features, piecewise
deterministic procedures remain inherently sequential and therefore have limited compatibility with
parallel computing technologies. There have however been some successes in parallel discrete time
MCMC procedures [Daskalakis et al., 2018, Gonzalez et al., 2011, Jacob et al., 2020, Song and
Moore, 2017, Terenin et al., 2020], though most rely on rejection steps and hence it is not obvious
how one may adapt these methods to rejection-free PDMP schemes with deterministic updates.

1.1 Contribution

This article introduces the Masked Bouncy Particle Sampler, a parallel PD-MCMC sampling scheme
to sample from sparse graphical models. By representing the target distribution as a factor graph
[Wainwright et al., 2008], the Masked BPS extends the benefits of model decomposition exhibited
by the Local BPS by introducing conditional independence between groups of factors. This may
be viewed as splitting the factor graph into sub-graphs. Conditional independence permits parallel
updates of the parameters within each sub-graph, and hence allows the use of additional computing
resources. This form of parallel computation is referred to as chromatic, after Gonzalez et al.
[2011]. Additionally, we introduce a dynamic spatial partitioning scheme within the Local BPS and
Masked BPS frameworks. Dynamic partitioning of spatial regions induces a dynamic factor graph
representation on the distribution of interest and hence reduces boundary effects associated with
static model decomposition, as discussed in Song and Moore [2017].

1.2 Setting and Notation

We provide methodology for the task of sampling from a target probability distribution π, which
may be evaluated up to a normalising constant, as shown in Equation (1) below. It shall be assumed
throughout that π has support on X = Rd for some dimension d ∈ Z+, and is accompanied by the
usual Borel σ-algebra B(Rd). It is also assumed that π admits a continuously differentiable density
with respect to the Lebesgue measure. In an abuse of notation, this density will also be referred to
as π.

We focus here on the class of distributions whereby conditional dependencies can be represented
graphically and hence where the target density may be factorized as in Equation (1), though this
factorization need not necessarily be unique. Let G = (F,N,E) be a bipartite, undirected, graph
representing a graphical model consisting of vertices F = {f1, f2, . . .} corresponding to factors {γf}f ;
vertices N = {1, . . . , d} corresponding to variables {xi}i; and, edges E connecting elements of N
and F . G is referred to as a factor graph [Wainwright et al., 2008]. The target π can be represented
as a factor graph through the factorization:

π(x) ∝ γ(x) γ(x) =
∏
f∈F

γf (xf), (1)

where xf = {xi|i ∈ Nf} is the subset of all variables x corresponding to factor f . Specifically,
Nf ⊂ N , where where i ∈ Nf if (i, f) ∈ E. Throughout this article γ shall be expressed through its

2

potential energy, U(x) = − log γ(x), and in factorized form:

U(x) =
∑
f∈F

Uf (xf) Uf (xf) = − log γf (xf). (2)

For notational purposes, let P(F) denote the power-set of the group of factors, F , let the set of
neighbouring factors to factor f ∈ F be denoted F̄f = {f ′|Nf ∩Nf ′ 6= ∅}, and let the joining nodes
between f and f ′ be denoted Nf,f ′ = Nf ∩ Nf ′ . Let N̄f = ∪f ′∈F̄f

Nf ′,f denote the set of nodes
containing Nf and all neighbouring nodes, connected by a factor.

2 Piecewise Deterministic Markov Chain Monte Carlo

2.1 General Framework

PDMPs are a class of continuous time Markov process introduced by Davis; see Davis [1993] for
a rigorous measure-theoretic treatment. In the interest of brevity, we will here follow the informal
presentation of Vanetti et al. [2017] and Fearnhead et al. [2018] where a PDMP {zt ∈ Z|t ∈ R+}
shall be viewed as a càdlàg process that evolves as follows: events occur at times given by an
inhomogeneous Poisson Process with state-dependent event rate; between events the process evolves
deterministically, and at events the state of the process changes according to some transition kernel.

1. Event Rate
Define event rate λ : Z → R+ where event times τ are simulated according to the inhomoge-
neous Poisson process: P(τ > t) = exp(−

∫ t
0
λ(zs)ds).

2. Deterministic State Propagation
Let state zt evolve according to an ordinary differential equation (ODE) with drift φ : Z → Z
where: dzt

dt = φ(zt).

3. Event Operation
At event times the state transitions, zt → z′t, according to some kernel Q, i.e. z′t ∼ Q(·|zt).

We select the event rate, ODE and kernel to construct a PDMP which admits an invariant dis-
tribution ϕ with marginal π. For example, the samplers detailed in Section 2.2 are designed with
state zt = (xt, vt) ∈ X × V where X = Rd and invariant distribution ϕ(dx, dv) = π(dx)ψ(dv). In
these examples, vt is a vector of auxiliary variables referred to as the velocity and parameterizes the
deterministic linear flow φ(z) = (v,0d).

2.2 Existing Samplers

Although there are many PDMP sampling schemes in the literature, the Bouncy Particle Sampler
(BPS) [Peters and de With, 2012, Bouchard-Côté et al., 2018] is one of the most well-studied theo-
retically [Deligiannidis et al., 2019, Durmus et al., 2020] with various extensions such as the Local

3

Figure 1: Path trajectory of Masked BPS, Local BPS and Coordinate Sampler for 500 events
targeting an Isotropic Gaussian.

BPS [Bouchard-Côté et al., 2018], Stochastic BPS Pakman et al. [2017], and Generalized BPS [Wu
and Robert, 2017]. The Masked BPS proposed here is another variant of the BPS, taking inspiration
from the Local BPS and Coordinate Sampler [Wu and Robert, 2020].

By representing the target distribution as a factor graph, the Local BPS uses event transition kernels
corresponding to each factor, leading to localised updates on subsets of the velocity components.
This is computationally cheaper per update and allows for an efficient implementation using sub-
sampling. The Coordinate Sampler also uses local updates on the state component, x, by nullifying
all but one coordinate of the velocity vector, as described below.

2.2.1 Local Bouncy Particle Sampler

In the Local BPS procedure, there are two types of events: refresh events and bounce events, where
each bounce event corresponds to one of the factors.

Refresh events are triggered at the arrival times of a Poisson process of constant rate λref . The
bounce event per factor f occurs according to an inhomogeneous Poisson process of rate λf (x, v),
involving only xf and vf . By the principle of superposition of Poisson processes, one may sample
event times τ with rate λ(x, v) by sampling a bounce time proposal τf for each factor f using λf (x, v)
and a refresh time proposal τref , and setting τ = min{τref , {τf}f}.

4

1. Event Rate
λ(x, v) = λref +

∑
f∈F λf (x, v)

λf (x, v) = max{0, 〈∇xUf (x), v〉}

2. Deterministic State Propagation
dxt

dt = vt
dvt
dt = 0

3. Event Operation

Q(x′, v′|x, v) =

δx(x′)

 λref
λ(x, v)

ψ(v′) +
∑
f∈F

λf (x, v)

λ(x, v)
δRf (x)v(v

′)


The bounce operator Rf (x) is defined as

Rf (x)v =
(
I− 2

∇Uf (x)
(
∇Uf (x)

)T
||∇Uf (x)||2

)
v.

A refresh event involves sampling a new velocity vector, v ∼ ψ with support V = Rd. It is convenient
to let ψ be the standard multivariate Gaussian distribution, as shall be done in this work, but other
distributions have been considered in Bouchard-Côté et al. [2018].

A bounce event corresponding to factor f modifies only sub-component vf of the velocity vector,
according to operator Rf (x). By the memoryless property, previously sampled bounce event proposal
times remain valid for those other factors whose velocity components did not change, f ′ ∈ F \ F̄f .
This allows for the recycling of bounce event proposal times after each event and may be efficiently
implemented using a priority queue; see Bouchard-Côté et al. [2018] for full details. Note also that
the original global BPS algorithm may be recovered by treating the complete factor graph as a single
factor.

2.2.2 Coordinate Sampler

In the Coordinate Sampler, only a single coordinate evolves deterministically at any time, corre-
sponding to a velocity v ∈ V, where V = {±ei|i ∈ {1, . . . , d}} and {ei}di=1 form the standard basis
for Rd. At event times, the active velocity coordinate may change and direction may reverse. The
velocity is updated to ±ei with probability proportional to λ(x,∓ei).

5

1. Event Rate
λ(x, v) = λref + max{0, 〈∇U(x), v〉}

2. Deterministic State Propagation
dxt

dt = vt
dvt
dt = 0

3. Event Operation

Q(x′, v′|x, v) =
∑
v∗∈V

λ(x,−v∗)
λ(x) δx(x′)δv∗(v

′)

λ(x) =
∑
v∗∈V λ(x,−v∗) = 2dλref +

∑d
i=1 |

∂U
∂xi
|

As only a single entry of the state vector xt evolves during the deterministic step, the Coordinate
Sampler displays a Gibbs-like behaviour.

3 Masked Bouncy Particle Sampler

By generalizing the Coordinate Sampler’s deterministic dynamics to blocks, rather than coordinates,
and combining it with the factor-graph decomposition, one arrives at the Masked Bouncy Particle
Sampler described below.

3.1 Algorithm Description

Before describing the Masked BPS, we first introduce Boolean mask variables, b ∈ B ⊂ {0, 1}d. We
refer to b and B as a mask and a mask-set respectively. Now consider a factor graph as described
in Section 1 with factors F and variable nodes N ∈ {1, . . . , d}. A carefully chosen mask b may be
used to create a separation, κ(b), on the factors F , which spatially partitions the factor graph into
sub-graphs according to Definition 1 below.

Definition 1. The separation of the group of factors F induced by mask b ∈ {0, 1}d is denoted
κ(b) ⊆ P(F) and satisfies for any F, F ′ ∈ κ(b) with F 6= F ′: ∀f ∈ F ∈ κ(b),∀f ′ ∈ F ′ ∈ κ(b) then
bi = 0 for all i ∈ Nf1 ∩Nf2 .

The Masked BPS is a PMDP consisting of bounce and refresh events, similar to the Local BPS.
However, the Masked BPS also includes additional auxiliary mask variable b ∼ ρB, where ρB is
some discrete distribution on B. The primary difference to the Local BPS is that the deterministic
flow, φ(z), may be decomposed into the latent velocity, v, and mask b, according to φ(xt, vt, bt) =
(v � b,0d,0d), where � refers to the element-wise product. For each i ∈ {1, . . . , d}, latent velocity
element vi is said to be masked if bi = 0. The effect of masking multiple velocity components
is similar in spirit to the Coordinate Sampler’s approach, but generalized to blocks rather than
coordinates. Figure 1 illustrates how the Masked BPS exhibits similar dynamics to both the Local
BPS and Coordiante sampler. Here the samplers are shown for a simple bivariate isotropic Gaussian
target distribution, where for the Masked BPS either one or none of the coordinates may be masked.

Refresh events occur at constant rate λsync, and correspond to events with transition kernel
Qsync(x

′, v′, b′|x, v, b) = δx(x′)ψ(v′)ρB(b′). Bounce events occur per factor f ∈ F , at rate λf (x, v�b)

6

and correspond to transition events Qf (x′, v′, b′|x, v, b) = δx(x′)δb(b
′)δRf (x,b)v(v

′). As described
above, the active state evolves with linear rate between refresh and bounce events. Here active state
refers to those coordinates of x which are not masked.

Under the described process, the state of the PDMP is zt = (xt, vt, bt) ∈ Rd × Rd × B and may be
implemented using Algorithm 3.

1. Event Rate
λ(x, b� v) = λsync +

∑
f∈F λf (x, b� v)

λf (x, b� v) = max{0, 〈∇xUf (x), b� v〉}

2. Deterministic State Propagation
dxt

dt = bt � vt dvt
dt = 0 dbt

dt = 0

3. Event Operation

Q(x′, v′, b′|x, v, b) =
λsync

λ(x,b�v)δx(x′)ψ(v′)ρB(b′) +
∑
f∈F

λf (x,b�v)
λ(x,b�v) δx(x′)δb(b

′)δRf (x,b)v(v
′)

The bounce operator Rf (x, b) is constructed such that masked latent velocity components remain
unchanged at bounce events. This permits bounce events corresponding to factors in different sub-
graphs to occur in parallel, between refresh events. At bounce events the latent velocity vector
transitions according to bounce operator Rf (x, b) where v → Rf (x, b)v, given by:

Rf (x, b) =
(
I− 2

(∇Uf (x)� b)(∇Uf (x)� b)T

||(∇Uf (x)� b)||2
)
. (3)

x0

b0

x1 x2 x3

y1 y2 y3

x0 x0

b1

x0

x1 x2 x3

y1 y2 y3

x0

b2

x1 x2 x3

x1 x2 x3

y1 y2 y3

Figure 2: Blue indicates non-masked parameters, red indicates masked parameters, and grey in-
dicates constants i.e. data when sampling a posterior. Masks: b0 = (1, 1, 1, 1), b1 = (0, 1, 1, 1),
b2 = (1, 0, 0, 0)

Consider the factor graph under mask b with corresponding separation of factors: κ(b) = {F1, F2, . . .}.
At a bounce event corresponding to factor f1 ∈ F1, the operator Rf1(x, b) will update only non-
masked vi i ∈ {j|bj = 1} ∩ Nf1 . As a consequence of Definition 1 and of sub-sampling, only
bounce-time proposals for factors f ′ ∈ F1 whose velocity components have changed would need to
be re-sampled. This means that the global factor graph may be split into sub-graphs, one for each
Fi ∈ κ(b). Therefore, the process may be run in parallel between refresh events of b, which acts
as a synchronization between separate worker processes for each sub-graph. This is analogous to
the Chromatic sampler of Gonzalez et al. [2011], whereby non-masked variables are considered one

7

colour and masked variables another. Figure 2 depicts a simple hierarchical model and sub-graphs
under different Boolean masks.

Algorithm 1: PriorityQueue

1 For given T, F, x, v;
2 Initialize empty queue Q;
3 foreach f ∈ F do
4 τf ∼ NewBounce(xf , vf);
5 Tf ← T + τf ;
6 Add (Tf , f) to Q in increasing order of Tf ;
7 Return Q

8 end

Algorithm 2: NewBounce

1 For given U(·), x, v;
2 Simulate τ such that:

3 P(τ > t) = exp(−
∫ t

0
max{0, 〈∇U(x+ v � t), v〉}ds);

4 Return τ ;

Lemma 3.1. The generator L for the Masked BPS is given for functions h : Rd×Rd×B → R by:

Lh(x,v, b) =

〈∇xh(x, v, b), b� v〉

+
∑
f∈F

λf (x, b� v){h(x,Rf (x, b)v, b)− h(x, v, b)}

+ λsync

∫
{h(x, v′, b′)− h(x, v, b)}ψ(dv′)ρB(db′).

Here h is bounded and satisfies the regularity conditions given by [Davis, 1993, Theorem 26.14].

Theorem 3.1. The Masked BPS described above and by Algorithm 3 induces a PDMP with invariant
extended distribution ϕ(dx, dv,db) = π(dx)ψ(dv)ρB(db), and hence desired marginal distribution π.

If
∫
Lh(x, v, b)π(dx)ψ(dv)ρB(db) = 0 then by [Davis, 1993, Theorem 24.7] the procedure admits the

correct invariant distribution. The proof is detailed fully in the supplementary material. The result
also follows directly from Proposition 2 of Vanetti et al. [2017], given Lemma A.2 in the Appendices.

A refresh event for auxiliary variables b and v at synchronization times is sufficient to make the
process irreducible, providing that after each refresh there is a positive probability of each velocity
component being non-masked. Hence, by Davis [1993], an irreducible PDMP which targets the
invariant distribution π may be used to compute integrals with respect to π. During refresh events,
the variables b, v and τsync are sampled independently of the state of the process. This means that for

8

Algorithm 3: Masked Bouncy Particle Sampler

1 Initialization:
2 Tsync ∼ Exp(λsync), Tprev sync ← 0, b ∼ ρB, v ∼ ψ;
3 Initialize x, t ;
4 while another update requested do
5 Parallel Bounce Events:
6 foreach Fb in κ(b) in parallel do
7 QFb

∼ PriorityQueue(x, v � b, Tprev sync, Fb);
8 (T, f)← pop QFb

;
9 while T < Tsync do

10 foreach f ′ ∈ F̄bf do
11 xf ′ ← xf ′ + bf ′ � vf ′ � (T − tf ′);
12 end
13 vf ← Rf (xf , bf)(vf);
14 foreach f ′ ∈ F̄bf do
15 τf ′ ∼ NewBounce(xf ′ , bf ′ � vf ′);
16 Update bounce time in QFb

associated to f ′ to the value T + τf ′ ;
17 tf ′ ← T

18 end
19 (T, f)← pop QFb

;

20 end
21 foreach f ′ in Fb in parallel do
22 xf ′ ← xf ′ + bf ′ � vf ′ � (Tsync − tf ′);
23 tf ′ ← Tsync;

24 end

25 end
26 Refresh / Synchronization event:
27 b ∼ ρB,v ∼ ψ, τsync ∼ Exp(λsync);
28 Tprev sync ← Tsync, Tsync ← Tsync + τsync
29 end

a fixed pseudo time limit T , one may sample {(τsync,1, v′1, b1), (τsync,2, v
′
2, b2), . . . , (τsync,N , v

′
N , bN)}

such that
∑N
i τi > T , as part of initialization. In a distributed computing architecture where

each factor is associated to a separate worker process, these pre-computed samples may be passed
to each worker in advance of the bounce operations that run in parallel. This may reduce global
communication beyond the initial sampling stage to communication between only worker processes
that are associated to neighbouring factors.

3.2 Dynamic Factorization

The performance of the Masked BPS is sensitive to the choice of mask-set, B, and choice of factor
graph decomposition F . Instead of fixing the model factorization, one may exploit the doubly
stochastic PDMP formulation detailed in Pakman et al. [2017] and Vanetti et al. [2017] to allow for
a dynamic factorization of the Local and Masked BPS.

9

Consider a finite collection of possible factorizations, F , of the target density π, equipped with
measure µF . One may express the joint distribution of x and F as follows:

π(x, F) = π(x|F)µF ({F}) = µF ({F})
∏
f∈F

πf (xf)

It is straightforward to show that the factorization may be marginalized to recover the target dis-
tribution. ∫

π(x|F)µF (dF) =
∑
F∈F

µF ({F})
∏
f∈F

πf (xf)

= π(x)
∑
F∈F

µF ({F}) = π(x).

In order to preserve the efficiency gains from sub-sampling in the Local BPS and Masked BPS, it
is convenient to perform the factorization transitions at refresh or synchronization events. Indeed,
given that the choice of mask-set B is dependent on factorization F , one may choose to sample both
F and B jointly at synchronization events. This leads to an algorithm very similar to Algorithm 3,
with the addition of sampling F at synchronization times.

Consider a chain shaped Gaussian Markov Random Field (MRF) of length d = 7 where each variable
is standard normal, with pairwise precision ρ = 0.5, as depicted in Figure 3.

x0A: x1 x2 x3 x4 x5 x6

x0B: x1 x2 x4 x5 x6

x2 x3 x4

x0C: x1 x2 x3

x3 x4 x5 x6

Figure 3: Diagram of dimension d = 7 Gaussian chain model, with example separations into sub-
graphs under different factorization schemes.

One may split the chain into three factors using factorization B in Figure 3 and masking x2 and
x4. Masking x3 with factorization C results in a different split. If there is strong inter-dependency
between x2 and x1 (or x4 and x5), then mixing will be slow under factorization B as x2 (and/
or x4) will be static for periods. However, mixing may be faster under factorization C. If the
dependency is not known a priori, then one may use a dynamic factorization to reduce the risk of
choosing an inefficient factorization. Indeed one may view choosing the factorization, or collection of
factorizations, in the same way as tuning a hyper-parameter to improve algorithm performance. For
the above described model, the Masked BPS with dynamic scheme using factorizations B and C with
equal probability delivers effective sample size (ESS) per second of 665.6. The static Masked BPS
under factorization B has ESS/s of 579.2. This demonstrated the benefit of the dynamic extension.

10

Theorem 3.2. The Masked BPS with Dynamic Factorization induces a PDMP with invariant
extended distribution ϕ(dx,dv,db, dF) = π(dx)ψ(dv)ρBF

(db)µF (dF), and hence desired marginal
distribution π.

A direct proof using the generator is given in the supplementary material. This may also be shown
using Lemma A.2 to verify conditions of Proposition 3 in Vanetti et al. [2017] for doubly stochastic
PDMPs, as shown in the Appendices.

3.3 Discussion

3.3.1 Related Samplers

The mask-set B, factorization-set F , and sampling distributions ψ, ρB and µF may be considered
tuning parameters in the Masked BPS procedure. Consequently, one may construct a wide class of
samplers with such choices.

For example, for any given factorization F , one may choose a mask-set consisting only of 1s i.e. B1 =
{(1, 1, . . . , 1)} hence recovering the Local BPS. Similarly, one may choose the trivial factorization-set
consisting of only a single factor for the whole model and the trivial mask-set consisting of 1s to
recover the regular BPS. Indeed, by choosing the factorization set to include both the trivial single
factor factorization in addition to a non-trivial factorization, one may switch between the BPS and
Local BPS at each refresh event according to distribution µF .

The Masked BPS interpolates between the Local BPS and Coordinate Sampler. By choosing the
mask-set to be those masks with 0 entries except a single coordinate and choosing the factorization
set of a single factor, one recovers a Coordinate Sampler style procedure. In such a setting, the
velocity component is updated according to v � ei → −v � ei under operator Rf (x, ei) between
refresh events. The primary difference to the Coordinate Sampler is that the active coordinate may
only change at refresh events, rather than switching at each event as with the Coordinate Sampler.
This is likely to lead the Masked BPS to be less efficient than the Coordinate Sampler, when using
such choices of mask and factorization set.

3.3.2 Limitations

The Masked BPS allows one to exploit parallel computing resources, this however comes at the
cost of fixing the state of masked coordinates in the PDMP. Similar to the Coordinate Sampler,
holding components of the state constant through time will lead to increased auto-correlation of
those components and slower mixing of the process relative to non-masked parameters. Additionally,
if the Masked BPS is implemented to run in parallel, there is a communication cost to also consider.
One must therefore balance the benefit of being able to use additional computing resources with the
downsides of a less efficient PDMP per iteration and increased communication cost. This balance may
be managed through careful tuning of the mask-set. This makes the parallel computing capabilities
of the Masked BPS suited to the case of very large models whereby operations involving the whole
model are sufficiently expensive to warrant splitting the model.

11

Although a dynamic factorization may hedge against a poor choice of factorization, an unfortunate
consequence of having multiple factorizations is that one must be able to sample bounce event
proposal times for each factor in each factorization. There are tools to assist sampling event times
such as thinning, superposition and time-scale transformation methods, see Bouchard-Côté et al.
[2018]. However, efficiently sampling exact event times is in general not trivial given that each
event time proposal is specific to the model and factor. Pakman et al. [2017] suggests using a
general predictive model in combination with thinning in order to automatically simulate event
times. Although this may reduce the requirement of specifying bounce event proposals by the user,
the proposed method is biased.

4 Numerical Experiments

The dynamic version of the Masked BPS, referred to as Masked BPS henceforth, is compared to
Local BPS and HMC in numerous experiments on synthetic and real data.

The HMC NUTS implementation from PyMC3 [Salvatier et al., 2016] is used for benchmarking
and is used with the NumPy backend for fair comparison to the Masked BPS and Local BPS
implementation, which also use NumPy [Harris et al., 2020]. Distributed computing library Ray
[Moritz et al., 2018] is used to introduce multi-process parallelism for the Masked BPS. Similar
computational resources are used for each of the methods due to multi-threading for the Local BPS
and HMC. The Local BPS and Masked BPS are used with refresh rates λsync = λref = 0.01 and
average effective sample size (ESS) per second is presented over 25 runs. Up to 12 cores are used
for the Masked BPS.

Further technical implementation details such as dynamic factorization and mask schemes as well
as results tables and code are given in the supplementary material.

4.1 Gaussian State Space Model

Consider latent variables xt ∈ Rd for t ∈ {1, . . . , T} of a simple Gaussian state-space model where
x0 ∼ N (µ0,Σ0) and for t ≥ 1

xt = Fxt−1 + ut, ut ∼ N (0,ΣU),

yt = xt + vt, vt ∼ N (0,ΣV).

The Masked BPS was compared to both HMC (NUTS) and the Local BPS for a variety of d, T
configurations. In each experiment F = 0.5Id, µ0 = 0 and Σ0 = ΣU = ΣV = Id where Id is the d
dimensional identity matrix. In the Local BPS, the graph was factored per time-step. As all factors
are Gaussian, event times were computed using the time-scale transformation of Bouchard-Côté
et al. [2018, Section 2.3]. Dynamic factorization was performed by splitting and grouping the model
temporally across min(T/5, 12) processes.

Figure 4 illustrates the superior performance of the Masked BPS for a range of size models compared
to the other methods considered.

12

(a) d = 10 (b) d = 25 (c) d = 50

Figure 4: Gaussian State Space Model ESS/s

4.2 Hierarchical Bayesian Logistic Regression

(a) d = 10 (b) d = 25 (c) d = 50

Figure 5: Hierarchical Bayesian Logistic Regression, ESS/s

The target distribution in a Bayesian logistic model is of the regression coefficients whereby x0 ∈ Rd
denotes global coefficients and xg ∈ Rd denotes local coefficients for group g ∈ {1, . . . , G}, Each
group g has corresponding covariates ξg ∈ RN×d and N = 10d observations, yg ∈ {0, 1}, where

x0 ∼ N (0,ΣU), xg = x0 + vt, vt ∼ N (0,Σv),

pg = Logistic(ξTg xg), yg ∼ Bernoulli(pg).

The Masked BPS is compared to Local BPS for a range of d and G. Only a single factorization was
used, and the graph was split my masking x0 periodically. Event proposals for the logistic terms are
sampled using alias tables, described in Bouchard-Côté et al. [2018, Appendix C]. It can be seen in
Figure 5 that for the smallest models, d = 10, G ∈ {25, 50} the Local BPS performs well, however
the benefits of parallelization are realized for larger models, and the Masked BPS exhibits superior
performance for all other configurations. For the Masked BPS, ESS/s initially increases with G as
additional parallel computing resources are deployed. However, the number of parallel processes
is limited to 12, hence multiple independent sub-graphs are assigned to the same worker process
leading to lower ESS/s for high G. The HMC implementation used suffers instability for larger
groups, G and is omitted here. One of the reasons the Masked BPS performs well here is due to the
recycling of event time proposals. There tends to be high correlation between global variables x0,
and local variables xg, this leads to slow exploration of the sample space. In the context of the Local
BPS, any event involving x0 triggers recalculation of event times for the other G factors involving x0.

13

This is expensive. If x0 was masked, then the xg can be updated independently without triggering
recalculation of new event proposals.

4.3 Dynamic Bradley-Terry Model

In the simplest setting of the Bradley-Terry (BT) model, there are d players whereby player i has
an associated skill quantity xi ∈ R. In a competition between player i and player j, the probability
of player i winning is exi

exi+exj . This is a difficult problem due to the sparsity of observations, as
observed competition results correspond only to pairs of the unknown skill quantities. The values
{xi}i may be used for ranking players and predicting future results and has application in sports
and video games. The dynamic extension to this model incorporates temporal dependency across
the skill quantities, (x(t))Tt=1:

x(0) ∼ N (µ0,Σ0), x(t) = x(t−1) + ut, ut ∼ N (0,ΣU),

y
(t)
i,j = Bernoulli

(
ex

(t)
i

ex
(t)
i + ex

(t)
j

)
.

Football match data has been taken from Curley and Malmedal [2014]:

England Soccer matches excluding draws, across English divisions from seasons 1950 − 2019,
T = 69, including only the d = 61 teams present in every season.

France, Germany Matches excluding draws, across all division from 1980 − 2019, T = 39, in-
cluding the d = 99 teams present in any season, for each country.

Belgium Soccer matches, excluding draws, from 1995− 2019, T = 25, including any of the d = 36
team that played.

The Masked BPS has been compared to the Local BPS for µ0 = 0, Σ0 = ΣU = Id. The Local BPS
performs marginally better for the Belgium dataset due to the smaller time-series and fewer matches,
leading to less relative benefit from splitting the factor graph. Though note these experiments fix
the number of graph partitions to min(T/5, 12), setting a single partition would be the same as
Local BPS. For larger models however, the Masked BPS shows significant outperformance.

Table 1: Dynamic BT model, ESS/s ×10−2

d T Local BPS Masked BPS

England 61 69 1.36 8.11
France 99 39 1.40 8.74
Germany 99 39 1.22 11.31
Belgium 36 25 13.97 12.78

14

5 Conclusion and Extensions

This work introduces the Masked Bouncy Particle Sampler and dynamic factorization extension.
Many probabilistic models may be expressed as sparse factor graphs, the Masked BPS exploits this
sparsity by splitting the model’s factor graph into sub-graphs and performing piece-wise deterministic
sampling on each sub-graph, in parallel. It has been shown that the Masked BPS outperforms state-
of-the-art sampling procedures for many large sparse graphical models.

Although the Masked BPS involves distributed computation of events, the procedure is not asyn-
chronously parallel as a barrier is required in order to perform refresh events and change the Boolean
mask. This involves synchronizing worker processes. Recent developments by Terenin et al. [2020],
Daskalakis et al. [2018], Feng et al. [2021] provide methodology to perform asynchronous Gibbs
sampling in discrete time. A natural extension would be to investigate whether such asynchronous
methods could be applied in the PDMP setting.

15

References

Joris Bierkens, Paul Fearnhead, and Gareth Roberts. The zig-zag process and super-efficient sam-
pling for Bayesian analysis of big data. The Annals of Statistics, 47(3):1288–1320, 2019.

Alexandre Bouchard-Côté, Sebastian J Vollmer, and Arnaud Doucet. The bouncy particle sam-
pler: A nonreversible rejection-free Markov chain Monte Carlo method. Journal of the American
Statistical Association, 113(522):855–867, 2018.

James Curley and H̊akon Malmedal. engsoccerdata: Release v0.1.2, December 2014. URL
https://doi.org/10.5281/zenodo.13158.

Constantinos Daskalakis, Nishanth Dikkala, and Siddhartha Jayanti. HOGWILD!-Gibbs can be
panaccurate. In Proceedings of the 32nd International Conference on Neural Information Process-
ing Systems, pages 32–41, 2018.

Mark HA Davis. Markov Models & Optimization. Routledge, 1993.

George Deligiannidis, Alexandre Bouchard-Côté, and Arnaud Doucet. Exponential ergodicity of the
bouncy particle sampler. The Annals of Statistics, 47(3):1268–1287, 2019.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid Monte Carlo.
Physics Letters B, 195(2):216–222, 1987.

Alain Durmus, Arnaud Guillin, and Pierre Monmarché. Geometric ergodicity of the bouncy particle
sampler. Annals of Applied Probability, 30(5):2069–2098, 2020.

Paul Fearnhead, Joris Bierkens, Murray Pollock, and Gareth O Roberts. Piecewise deterministic
Markov processes for continuous-time Monte Carlo. Statistical Science, 33(3):386–412, 2018.

Weiming Feng, Thomas P Hayes, and Yitong Yin. Distributed Metropolis sampler with optimal
parallelism. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2121–2140. SIAM, 2021.

Joseph Gonzalez, Yucheng Low, Arthur Gretton, and Carlos Guestrin. Parallel Gibbs sampling:
From colored fields to thin junction trees. In Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, pages 324–332, 2011.

Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array program-
ming with NumPy. Nature, 585(7825):357–362, sep 2020. doi: 10.1038/s41586-020-2649-2. URL
https://doi.org/10.1038/s41586-020-2649-2.

Pierre E Jacob, John O’Leary, and Yves F Atchadé. Unbiased Markov chain Monte Carlo methods
with couplings. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(3):
543–600, 2020.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and et al. Ray: A distributed

16

framework for emerging ai applications. In Proceedings of the 12th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’18, page 561–577, USA, 2018. USENIX Asso-
ciation. ISBN 9781931971478.

Radford M Neal. MCMC using Hamiltonian dynamics. Handbook of Markov chain Monte Carlo, 2
(11):2, 2011.

Ari Pakman, Dar Gilboa, David Carlson, and Liam Paninski. Stochastic bouncy particle sampler.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 2741–
2750. JMLR. org, 2017.

Elias AJF Peters and G. de With. Rejection-free Monte Carlo sampling for general potentials.
Physical Review E, 85(2):026703, 2012.

Christian Robert and George Casella. Monte Carlo Statistical Methods. Springer Science & Business
Media, 2013.

John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. Probabilistic programming in
python using PyMC3. PeerJ Computer Science, 2:e55, apr 2016. doi: 10.7717/peerj-cs.55. URL
https://doi.org/10.7717/peerj-cs.55.

Jun Song and David Moore. Parallel chromatic MCMC with spatial partitioning. In Workshops at
the Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Alexander Terenin, Daniel Simpson, and David Draper. Asynchronous Gibbs sampling. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 144–154. PMLR, 2020.

Paul Vanetti, Alexandre Bouchard-Côté, George Deligiannidis, and Arnaud Doucet. Piecewise-
deterministic Markov chain Monte Carlo. arXiv preprint arXiv:1707.05296, 2017.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and variational
inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.

Changye Wu and Christian P Robert. Generalized bouncy particle sampler. arXiv preprint
arXiv:1706.04781, 2017.

Changye Wu and Christian P Robert. The coordinate sampler: A non-reversible Gibbs-like MCMC
sampler. Statistics and Computing, 30:721–730, 2020.

Tingting Zhao and Alexandre Bouchard-Côté. Analysis of high-dimensional continuous time Markov
chains using the local bouncy particle sampler. arXiv preprint arXiv:1905.13120, 2019.

17

A Invariance Proofs

Lemma A.1. The bounce operation, Rf (x, b), on the masked process enjoys the following properties:

||Rf (x, b)v|| = ||v||, (4)

Rf (x, b)Rf (x, b) = I, (5)

〈∇xUf (x), b�Rf (x, b)v〉 = −〈∇xUf (x), b� v〉. (6)

Proof. Each property is proved separately:

• ||Rf (x, b)v|| = ||v||:
By definition, one has

Rf (x, b)v = v − 2
〈(∇Uf (x)� b), v〉
||(∇Uf (x)� b)||2

∇Uf (x)� b.

Hence, by simple expansion, we obtain

||Rf (x, b)v||2 = ||v||2 − 4
〈∇Uf (x)� b, v〉2

||(∇Uf (x)� b)||2
+ 4
〈∇Uf (x)� b, v〉2||(∇Uf (x)� b)||2

||(∇Uf (x)� b)||4

= ||v||2.

• Rf (x, b)Rf (x, b) = I:

Rf (x, b)Rf (x, b) =
(
I− 2

(∇Uf (x)� b)(∇Uf (x)� b)T

||(∇Uf (x)� b)||2
)(

I− 2
(∇Uf (x)� b)(∇Uf (x)� b)T

||(∇Uf (x)� b)||2
)

= I− 4
(∇Uf (x)� b)(∇Uf (x)� b)T

||(∇Uf (x)� b)||2

+ 4
(∇Uf (x)� b)(∇Uf (x)� b)T (∇Uf (x)� b)(∇Uf (x)� b)T

||(∇Uf (x)� b)||4

= I− 4
(∇Uf (x)� b)(∇Uf (x)� b)T

||(∇Uf (x)� b)||2
+ 4

(∇Uf (x)� b)(∇Uf (x)� b)T

||(∇Uf (x)� b)||2

= I.

• 〈∇xUf (x), b�Rf (x, b)v〉 = −〈∇xUf (x), b� v〉:

〈∇xUf (x), b�Rf (x, b)v〉 =
∑
i

∂Uf (x)

∂xi
bi

(
vi − 2

(∂Uf (x)

∂xi

) ∑
j bj

∂Uf (x)
∂xj

vj∑
k bk

(
∂Uf (x)
∂xk

)2

)
=
∑
i

bi
∂Uf (x)

∂xi
vi − 2

∑
i

bi

(∂Uf (x)

∂xi

)2
∑
j bj

∂Uf (x)
∂xj

vj∑
k bk

(
∂Uf (x)
∂xk

)2

= −
∑
i

bi
∂Uf (x)

∂xi
vi

= −〈∇xUf (x), b� v〉.

18

For ease of notation, let refresh events correspond to index 0 and bounce events be indexed by
i ∈ [m] = {1, . . . ,m} correspond to factors f ∈ F , for some bijection between [m] and F . Hence the
dynamics of the Masked BPS described in Section 3 may be specified in terms of flow φ with kernels
and event-rates {Qi, λi}mi=0.

Lemma A.2. The Masked BPS dynamics detailed in Section 3 satisfy the following conditions of
Vanetti et al. [2017].

1. Mapping S : Z → Z where S(x, v, b) = S(x,−v, b) is ϕ-preserving, hence:

ϕ(dz) = ϕ(S(dz)).

2. Event rates {λi}i satisfy:

m∑
i=0

[λi(S(z))− λi(z)] = ∇ · φ(z)− 〈∇U(z), φ(z)〉.

3. For each i ∈ {0, 1, . . . ,m}:∫
λi(z)Qi(z,dz

′)ϕ(dz) = ϕ(S−1(dz′))λi(S(z′))

Proof of Lemma A.2

Proof. Under the Masked BPS formulation, the state z and invariant distribution ϕ may be split
into separate d-dimensional components z = (x, v, b) and ϕ(dx,dv,db) = π(dx)ψ(dv)ρB(db). Let
bounce events be indexed by i ∈ {1, . . . ,m}, and refresh event indexed at i = 0. In order to complete
the proof, one must may verify the following:

1. There exists a ϕ-preserving mapping S : Z → Z, hence:

ϕ(dz) = ϕ(S(dz)). (7)

2. The event rates {λi}mi=0 satisfy:

m∑
i=0

[λi(S(z))− λi(z)] = ∇ · φ(z)− 〈∇U(z), φ(z)〉. (8)

3. Each transition kernel Qi for i ∈ {0, . . . ,m} satisfy:∫
λi(z)Qi(z,dz

′)ϕ(dz) = ϕ(S−1(dz′))λi(S(z′)). (9)

19

Consider the mapping S(x, v, b) = (x,−v, b). It is clear condition (7) holds given that ||v||22 =
|| − v||22, and ψ is the standard Gaussian distribution. Additionally, note that S = S−1 (i.e. S is an
involution), hence ϕ(z) = ϕ(S(z)) = ϕ(S−1(z)) which will be used for the remaining conditions.

As φ(z) = (b� v,0d,0d), it is clear ∇ · φ = 0. λsync is constant, so:

m∑
i=0

[λi(S(z)− λi(z)] =
∑
f∈F

[λf (x, b�−v)− λf (x, b� v)] (10)

=
∑
f∈F

[max{0,−〈∇xUf (x), b� v)〉} −max{0, 〈∇xUf (x), b� v〉}] (11)

=
∑
f∈F

−〈∇xUf (x), b� v〉 (12)

= −〈∇xU(x), b� v〉 (13)

Hence, condition 2 is satisfied.

Condition 3 is trivial for the refresh/ synchronization event:∫
λ0(z)Q0(z,dz′)ϕ(dz) =

∫
λsyncδx(dx′)ψ(dv′)ρB(db′)π(dx)ψ(dv)ρB(db) (14)

= λsyncψ(dv′)ρB(db′)π(dx′) (15)

= λsyncψ(−dv′)ρB(db′)π(dx′) (16)

= λ0(S(z′))ϕ(S−1(dz′)). (17)

For the bounce events:∫
λf (z)Qf (z,dz′)ϕ(dz) =

∫
λf (x, b� v)δx(x′)δb(b

′)δRf (x,b)v(v
′)π(dx)ψ(dv)ρB(db) (18)

= λf (x′, b′ �Rf (x, b)v)π(dx′)ψ(dv′)ρB(db′) (19)

= max{0, 〈∇xU(x′), b′ �Rf (x, b)v〉}π(dx′)ψ(dv′)ρB(db′) (20)

= max{0, 〈∇xU(x′), b′ �−v〉}π(dx′)ψ(dv′)ρB(db′) (21)

= λf (S(z′))ϕ(S−1(dz′)). (22)

The penultimate step uses the identity 〈∇xUf (x), b�Rf (x, b)v〉 = −〈∇xUf (x), b� v〉 from Lemma
A.1.

Indirect Proof of 3.1

Proof. Theorem 3.1 follows directly from Proposition 2 of Vanetti et al. [2017] given the conditions
of this proposition are satisfied according to Lemma A.2.

Direct Proof of Theorem 3.1

20

Proof. To prove invariance, one may appeal to [Davis, 1993, Theorem 24.7], and verify that the
extended generator integrates to 0.

The integral of this extended generator is:∫
b

∫
v

∫
x

Lh(x, v, b)π(dx)ψ(dv)ρB(db)

=

∫
b

∫
v

∫
x

〈∇xh(x, v, b), b� v〉π(dx)ψ(dv)ρB(db) (23)

+
∑
f∈F

∫
b

∫
v

∫
x

λf (x, b� v){h(x,Rf (x, b)v, b)− h(x, v, b)}π(dx)ψ(dv)ρB(db) (24)

+ λsync

∫
b

∫
v

∫
x

∫
b′,v′
{h(x, v′, b′)− h(x, b, v)}ψ(dv′)ρB(db′)π(dx)ψ(dv)ρB(db). (25)

Term (23)
Similar to the proof of the invariance of the Local BPS in Bouchard-Côté et al. [2018], it can be
seen that term (23) may be rewritten as follows:∫
b

∫
v

∫
x

〈∇xh(x, v, b), b� v〉π(dx)ψ(dv)ρB(db) =

∫
x

∫
b

∫
v

〈∇xU(x), b� v〉h(x, v, b)π(dx)ψ(dv)ρB(db).

(26)

Re-writing the inner-product in term (26):∫
b

∫
v

∫
x

〈∇xh(x, v, b), b� v〉π(dx)ψ(dv)ρB(db) =

∫
b

∫
v

∫
x

{∑
i

∂h

∂xi
(x, v, b)bivi

}
π(dx)ψ(dv)ρB(db).

(27)

Now focusing on the inner integral terms, one may use integration by parts and the chain rule.
Note that in an abuse of notation the RN density of each measure with respect to some dominating
measure is denoted the same as the measure itself.∫

xi

∂h

∂xi
(x, v, b)biviπ(x)dxi = h(x, v, b)biviπ(x)−

∫
xi

h(x, v, b)
∂π

∂xi
(x)bividx (28)

= h(x, v, b)biviπ(x) +

∫
xi

h(x, v, b)
∂U

∂xi
(x)biviπ(x)dxi. (29)

Given again h is bounded and each vi is centred at 0 under integration, the first term in equation
29 will reduce to 0 under integration with respect to ψ. By re-introducing the integrals with respect
to ψ and ρB one can then see that equation (26) holds.

Term (24)
As ψ is the standard normal distribution, ψ(dv) = ψ(Rf (x, b)dv) due to equation (4) in lemma A.1.
Using, this and also the equation (5) in lemma A.1, a change of variables: v → Rf (x, b)v on the first

21

term in equation (31) allows term (24) to be rearranged as:∑
f∈F

∫
b

∫
v

∫
x

λf (x, b� v){h(x,Rf (x, b)v, b)− h(x, v, b)}π(dx)ψ(dv)ρB(db) (30)

=
∑
f∈F

∫
b

∫
v

∫
x

λf (x, b� v)h(x,Rf (x, b)v, b)π(dx)ψ(dv)ρB(db)

−
∫
b

∫
v

∫
x

λf (x, b� v)h(x, v, b)π(dx)ψ(dv)ρB(db) (31)

=
∑
f∈F

∫
b

∫
v

∫
x

λf (x, b�Rf (x, b)v)h(x, v, b)π(dx)ψ(dv)ρB(db)

−
∫
b

∫
v

∫
x

λf (x, b� v)h(x, v, b)π(dx)ψ(dv)ρB(db) (32)

=
∑
f∈F

∫
b

∫
v

∫
x

[λf (x, b�Rf (x, b)v)− λf (x, b� v)]h(x, v, b)π(dx)ψ(dv)ρB(db). (33)

Using λf (x, b� v) = max{0, 〈∇xUf (x), b� v〉} and equation (6) in lemma A.1, term (24) may again
be rewritten:

=
∑
f∈F

∫
b

∫
v

∫
x

[max{0, 〈∇xUf (x), b�Rf (x, b)v)〉} −max{0, 〈∇xUf (x), b� v〉}]

h(x, v, b)π(dx)ψ(dv)ρB(db) (34)

=
∑
f∈F

∫
b

∫
v

∫
x

[max{0,−〈∇xUf (x), b� v)〉} −max{0, 〈∇xUf (x), b� v〉}]

h(x, v, b)π(dx)ψ(dv)ρB(db) (35)

= −
∑
f∈F

∫
b

∫
v

∫
x

〈∇xUf (x), b� v)〉h(x, v, b)π(dx)ψ(dv)ρB(db) (36)

= −
∫
b

∫
v

∫
x

∑
f∈F

〈∇xUf (x), b� v)〉h(x, v, b)π(dx)ψ(dv)ρB(db) (37)

= −
∫
b

∫
v

∫
x

〈∇xU(x), b� v)〉h(x, v, b)π(dx)ψ(dv)ρB(db). (38)

It is clear that terms (23) and (24) are equivalent to (26) and (38) respectively, hence sum to 0.

It is not difficult to show term (25) is also 0, hence by [Davis, 1993, Theorem 24.7], the procedure
has the correct invariant distribution.

Indirect Proof of Theorem 3.2

Proof. Theorem 3.2 follows directly from Proposition 3 of Vanetti et al. [2017] given the doubly
stochastic conditions of this proposition are satisfied for each factorization according to Lemma A.2
and the process under dynamic factorization admits the correct invariant distribution as detailed in
Section 3.2.

22

Lemma A.3. The generator L for the Masked BPS with dynamic factorization is given by:

Lh(x,v, b, F) =

〈∇xh(x, v, b, F), b� v〉

+
∑
f∈F

λf (x, b� v){h(x,Rf (x, b)v, b, F)− h(x, v, b, F)}

+ λsync

∫
{h(x, v′, b′, F ′)− h(x, v, b, F)}

ψ(dv′)ρBF (db′)µF (dF ′)

Direct Proof of Theorem 3.2

Proof. The proof follows a similar structure to that of Theorem 3.1, by using [Davis, 1993, Theorem
24.7], under condition:

∫ ∫ ∫ ∫
Lh(x, v, b, F)π(dx)ψ(dv)ρBF

(db)µ(dF) = 0. (39)

The generator of the Masked BPS with dynamic factorization is given by Lemma A.3:

Lh(x,v, b, F) =

〈∇xh(x, v, b, F), b� v〉 (40)

+
∑
f∈F

λf (x, b� v){h(x,Rf (x, b)v, b, F)− h(x, v, b, F)} (41)

+ λsync

∫
{h(x, v′, b′, F ′)− h(x, v, b, F)}ψ(dv′)ρBF

(db′)µF (dF ′).

One can see that the first two terms of Lh integrate to null using similar arguments as those in the
proof of theorem 3.1:∫
. . .

∫
〈∇xh(x, v, b, F), b� v〉+

∑
f∈F

λf (x, b� v){h(x,Rf (x, b)v, b, F)− h(x, v, b, F)}π(dx)ψ(dv)ρBF
(db)µ(dF) = 0.

It is also clear that the final term in Lh is also null under integration:∫
. . .

∫
λsync

∫
{h(x, v′, b′, F ′)− h(x, v, b, F)}ψ(dv′)ρBF

(db′)µF (dF ′)π(dx)ψ(dv)ρBF
(db)µ(dF) = 0.

B Additional Experiment Detail

All experiments used Google Cloud Platform (GCP) N1 Series 18vCPUs, 100GB RAM machine
using Intel Broadwell CPU platform.

23

B.1 Gaussian State Space Model

The model consists of multiple Gaussian factors. Event proposal times for each factor may be
simulated using time-scale transformation from Bouchard-Côté et al. [2018]. Dynamic masking and
factorization was achieved by using the most granular factorization of masking up S = min(12, T/5)
d-dimensional xt nodes along the t index then grouping factors sequentially into subgraphs. The
Local BPS used the most granular factorization without grouping. The number of masked variables
was chosen to balance the benefits of extra computational resources with the decreased efficiency of
sampling.

Table 2: Gaussian State Space Model, ESS/s

d Method T = 10 25 50 100

10
Local BPS 47.89 18.02 8.71 3.93
Masked BPS 126.75 74.77 67.68 41.30
HMC 9.21 4.21 1.30 0.20

25
Local BPS 34.63 13.94 6.12 3.03
Masked BPS 152.18 43.64 28.9 12.94
HMC 5.66 0.92 0.38 0.13

50
Local BPS 21.76 8.19 3.87 1.62
Masked BPS 73.91 62.17 25.11 8.47
HMC 3.42 0.49 0.22 0.06

B.2 Hierarchical Bayesian Logistic Regression

This model consists of Gaussian factors (π(x0), π(xg|x0)) and logistic factors
∏N
i=1 π(yi|xg). Event

time proposals for Gaussian factors were simulated by time-scale transformation and the proposals
for logistic terms were sampled using thinning and the alias method, described in detail in [Bouchard-
Côté et al., 2018, Appendix C.1].

The static factorization of the Masked BPS was used and global variable x0 was masked with
probability 0.5 at each refresh event. Up to 12 vCPUs were used, when the number of groups, G
exceeded 15 then multiple independent sub-graphs were assigned to the same process, hence the
decreasing efficiency as G increased.

24

Table 3: Logistic Regression, ESS/s ×10−2

d Method G = 25 50 75 100

10
Local BPS 35.27 21.61 12.69 11.45
Masked BPS 18.13 21.39 26.96 21.03

25
Local BPS 9.68 6.57 4.69 4.50
Masked BPS 18.58 28.44 20.60 17.76

50
Local BPS 3.25 2.58 2.52 2.23
Masked BPS 19.75 16.61 16.41 13.95

B.3 Dynamic Bradley-Terry

The Dynamic Bradley-Terry model again consists of Gaussian and logistic factors, the event time
proposals were sampled using the time-scale transformation and alias table thinning procedures
similar to the previous experiments. Dynamic factorization was achieved in the same way as the
state-space model example.

25

